
SI Appendix  
 
Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression 
program in macrophages (Chen et. al. 2012) 
 
 
Figures 

 
Suppl. Fig. S1. Deletion efficiency in Mx-Cre/Hdac3fl/fl mice. Top: Agarose gel showing 

the genotyping procedure. Bottom: western blot analysis. Histone H3 is used as a 

loading control. 

 

 
 

Suppl. Fig. S2. Ingenuity pathway analysis in Hdac3-null macrophages stimulated with 

LPS. 



 
Suppl. Fig. S3. Impaired inflammatory gene expression in HDAC3-depleted 

macrophages. Differentiating bone marrow cells were infected with retroviruses 

harboring two different shRNAs targeting Hdac3. 

 
Suppl. Fig. S4. p65/RelA and Irf3 recruitment to the Ifnb1 promoter in Hdac3-/- 

macrophages. a) Histone H3K27 acetylation at the Ifnb1 promoter in wt and Hdac3-



deficient cells. b) p65 and Irf3 recruitment to the Ifnb1 promoter in Hdac3-

deficientmacrophages. The Ccl5 promoter is shown as control. 

 

 
Suppl. Fig. S5. Nrf2-target genes upregulated in Hdac3-/- macrophages. Changes in 

expression of the indicated Nrf2-dependent genes was measured by quantitative RT-

PCR. 

 

 
Suppl. Fig. S6. Depletion of Cox-1 impairs viability of Hdac3-/- cells. Data obtained with 

two independent preparations of Hdac3 -/- cells are shown. 

 

 



 

 
Suppl. Fig. S7. Expression of M2 genes in Hdac3-deficient macrophages. 

 
 
Datasets and Tables 
 
Dataset S1. cDNA microarray data in untreated or LPS-treated Hdac3-/- macrophages. 

Dataset S2. Ingenuity pathway analysis. 

Dataset S3. PSCAN analysis for transcription factor binding site overrepresentation in 

differentially expressed genes. 

Dataset S4. Acetyl-H4 ChIP-Seq data. 

 
 
 
 
 
 
 



Table S1. Clover analysis hyper- and hypo-acetylated regions detected by ChIP-Seq. 

Hyperacetylated Distal LPS 
PWM score p 

MA0099.2_AP1 570 0 
MA0099.1_Fos 387 0 
BU0047_Myf6_primary 332 0.006 
MA0095.1_YY1 189 0 
MA0112.1_ESR1 156 0.009 
MA0071.1_RORA_1 124 0 
JMB_CAATT_box 39.7 0 
TA0012_RFX3_dimer 28.7 0.01 
BU0098_Zfp410_primary 26.1 0.002 
MA0078.1_Sox17 7.04 0 
MA0066.1_PPARG 6.99 0 
MA0117.1_Mafb 6.88 0.005 
TA0020_TFEB_dimer 0.545 0.001 
MA0072.1_RORA_2 -0.85 0.002 
MA0058.1_MAX -1.35 0 
MA0089.1_NFE2L1_MafG -3.73 0 
MA0147.1_Myc -3.77 0 
MA0104.2_Mycn -4.03 0 
MA0067.1_Pax2 -4.58 0.003 
MA0093.1_USF1 -4.76 0 
MA0104.1_Mycn -4.77 0 
TA0022_XBP1_monomer -4.94 0 
BMC_DPE -5.55 0.002 
MA0035.1_Gata1 -5.8 0.003 
MA0004.1_Arnt -5.85 0 
MA0037.1_GATA3 -6.4 0.008 
MA0036.1_GATA2 -6.62 0.001 
MA0259.1_HIF1A_ARNT -7.79 0.004 

 

Hyperacetylated distal UT 
PWM score p 

MA0442.1_SOX10 213 0 
MA0145.1_Tcfcp2l1_ 92.8 0.002 
BU0104_Zscan4_primary 46.5 0.004 
TA0007_GLI2_monomer 45.7 0.006 
MA0095.1_YY1 19.5 0 
TA0029_GLI3 14.6 0.004 
MA0117.1_Mafb 6.5 0.006 
HOMEO0113_Nkx2-2_2823.1 4.1 0.003 
BU0041_Mafb_primary 3.68 0.004 
   

Hypoacetylated distal LPS 



PWM score p 
MA0137.1_STAT1 444 0 
MA0050.1_IRF1 289 0 
MA0051.1_IRF2 88.7 0 
BU0037_Isgf3g_primary 80.6 0.004 
MA0112.1_ESR1 63.6 0.006 
MA0095.1_YY1 53.3 0 
MA0143.1_Sox2 35.2 0.003 
HOMEO0084_Irx2_0900.3 2.83 0.001 
HOMEO0088_Irx5_2385.1 2.56 0.005 
HOMEO0089_Irx6_2623.2 2.24 0.01 
MA0078.1_Sox17 -0.0467 0.01 
HOMEO0028_Duxl_1286.2 -4.97 0.01 
   

Hypoacetylated distal UT 
PWM score p 

ETS0004_h-ELF3 211 0.004 
ETS0001_h-EHF 121 0.005 
ETS0020_h-ETV7 111 0.008 
MA0062.1_GABPA 98.8 0.01 
MA0139.1_CTCF 55 0 
MA0122.1_Nkx3-2 28.7 0.001 
ETS0015_h-ETV2 20.8 0.006 
MA0062.2_GABPA 20.2 0.003 
BU0101_Zic1_primary 4.66 0.002 
BU0102_Zic2_primary 4.23 0 
BU0103_Zic3_primary 4.15 0 
BU0038_Jundm2_primary -1.65 0.004 
BU0004_Atf1_primary -2.23 0.005 
ETS0005_h-ELF4 -2.26 0.01 
MA0009.1_T -3.08 0.005 

 

 
Table S2. Primers used in the study. 

 

Gene 
symbol Refseq Primers 
ActB NM_007393 CCCTGAAGTACCCCATTGAA 
  GGGGTGTTGAAGGTCTCAAA 
Ccl5 NM_013653 ACCATATGGCTCGGACACCACT 
    ACCCACTTCTTCTCTGGGTTGG 
Ifnb1 NM_010510 GCTCCAAGAAAGGACGAACA 
    CCCAGTGCTGGAGAAATTGT 
Il6 NM_031168 CCATAGCTACCTGGAGTACATG 
    TGGAAATTGGGGTAGGAAGGAC 
Nos2 NM_010927 CCATCATGAACCCCAAGAGT 



    CATCCAGAGTGAGCTGGTAGG 
Ptgs1 NM_008969 TGCCCTCTGTACCCAAAGAC 
    TGTGCAAAGAAGGCAAACAG 
Ptgs2 NM_011198 CCACTTCAAGGGAGTCTGGA 
    AGTCATCTGCTACGGGAGGA 
Stat1 NM_009283 TCCATCGAGCTCACTCAGAA 
    TGTTCCAACTCCTCCAGCTT 
Tbp NM_013684 CTGGAATTGTACCGCAGCTT 
    TCCTGTGCACACCATTTTTC 
Tyk2 NM_018793 TCTAGCGAGGAGGAGATCCA 
    GATGTGCTGTCGGAAGGAAT 

 
 
Supplementary computational methods 

HDAC3 +/- and -/- microarray analysis 
CEL files were imported in R. Background correction and RMA normalization were 
performed using the Affy package (Irizarry et al). Log2-transformed data was then used 
to calculate fold changes. Statistical significance among triplicates was assessed 
through two-tailed Welch t-tests. Probeset to gene annotations were retrieved from 
mogene10stv1.r3cdf R annotation package. Every probeset showing at least a 2-fold 
change between two conditions with a p-value in the two-tailed Welch t-test equal or 
lower than 0.05 was considered as significantly differentially expressed. 
 
Gene Set enrichment analysis 
Gene set enrichment analysis (GSEA, Subramanian et al.) is a computational approach 
to test if a defined set of genes shows concordant and significant differences between 
two biological states. 
Genes whose expression was significantly different among HDAC3 -/- (KO) and HDAC3 
+/- (wt) were gathered for the LPS treated (4h) condition. These two groups were then 
split in up- and down- regulated to finally obtain two gene sets. Transcripts were ranked 
based on their difference in expression between the LPS treated and the untreated 
conditions in the wt. Then, for each one of the gene sets defined above, an enrichment 
score reflecting the degree to which it is over-represented at the extremes (top or 
bottom) of the ranked list was computed. A p-value for the score was then estimated 
through the generation of an empirical distribution of scores. This is built running GSEA 
on 1’000 random datasets obtained permuting the labels of the genes in the original 
dataset. Finally, the significance level is adjusted for multiple hypotheses testing, 
depending on the number of gene sets tested. 
GSEA R implementation was used to perform these analyses. 
 
Motif analysis (transcriptional start sites of differentially expressed genes) 
Position-specific weight matrices (PWMs) were collected from the literature (Portales-
Casamar et al, Badis et al, Berger et al, Bucher et al, Jolma et al), and used to build a 
custom set of 491 models. 
For each class of interest, probesets were mapped to RefSeq genes and genomic DNA 
sequences spanning from -500 to +250 bp from their transcriptional start sites (TSSs) 
were retrieved. Different comparisons were performed, using in turn each dataset as 
foreground or as background depending on the type of enrichment we were pursuing. In 



each comparison we used Pscan (Zambelli et al.) to detect statistically significant over-
represented PWMs. In case a PWM showed a p-value equal or lower than 0.01 (two-
tailed Welch’s t-test) it was considered as significantly over-represented. The Pscan 
source code was modified in order to replace the statistical evaluation step based on the 
z-test with a step based on the t-test. The t-test is more suitable than the z-test when 
comparing datasets with similar cardinality (see Zambelli et al., supplementary material). 
 
Analysis of microarrays from the literature 
The set of Ifnb-regulated genes was determined by the union of two datasets available in 
the literature, namely a time-course of Ifnb treatment (Raza et al.) and expression data 
from IFNAR -/- macrophages stimulated with LPS (Cheng et al.). 
(Raza et al.) Data was downloaded from the GEO (GSE20403) as a matrix file (RMA 
normalized data values). Once imported in R, we considered a probeset as differentially 
expressed when it reaches 1.5-fold change between two conditions, with a p-value equal 
or lower than 0.05 in a two-tailed Welch t-test. A probeset was considered as Ifnb-
regulated if it was found up-regulated at either 1h, 2h or 4h (compared to untreated 
macrophages). Probesets were annotated to the corresponding genes using the 
Affymetrix Datasheet (MoEx-1_0-st-v1.na30.mm9). 
(Cheng et al.) Data was downloaded from GEO (GSE27112) in SOFT Format. It was 
imported in R and then analyzed using Limma (Smyth 2004). A probeset was considered 
as Ifnb-regulated if down-regulated by at least 2-fold in the IFNAR -/- LPS treated 3h 
compared to its wild-type counterpart (same LPS treatment in wt macrophages). 
Probeset to gene annotations were retrieved through the R package biomaRt (Durinck et 
al.). 
For both datasets the information was then collapsed to gene symbols and the two sets 
were merge together to define the Ifnb-regulated genes. 
 
ChIP-seq analysis 
Single-end 36-bp reads were aligned to the mm9 genome using Bowtie (Langmead et 
al.). In order to keep only the reads mapping to a unique position in the genome, Bowtie 
was run with the option –m 1. The option –v 2 was also specified to allow for a maximum 
of 2 mismatches per read. 
In order to define the H4ac enriched regions (peaks), each HDAC3 -/- sample (untreated 
or LPS treated, 4h) was compared to its wild-type counterparts using Model-based 
Analysis for Chip-Seq (MACS, Zhang et al.). In order to define H4-acetylated regions 
that were unaffected by the KO (in untreated and independently in LPS treated), wt 
samples were compared with previously published bone marrow derived macrophages 
input DNA (GEO accession: GSM499415). These lists were then purged from regions 
that were either more or less acetylated in the KO compared to the wt. Regions were 
considered significantly enriched at a p-value threshold of 10-10. 
MACS is also able to generate raw tracks for visualization on the UCSC genome 
browser (Fujita et al.). Since the sequencing depths of the different samples were very 
heterogeneous, all the tracks were re-scaled to 10 millions reads. Gene Interval Notator 
(GIN), a tool included in the CARPET suite (Cesaroni et al.), was then used to annotate 
all regions over mm9 UCSC known genes extracted from the UCSC genome browser 
(Fujita et al.). GIN was run with priority set to “gene” and “-20000” as promoter definition. 
Pie charts summarizing genomic annotations were generated using R. 
 
Hierarchical clustering of ChIP-seq signals 
Raw data for PU.1 in untreated macrophages (GEO accession: GSM487450), H3K4me1 
in untreated (GEO accession: GSM487453) and H3K4me3 in untreated and LPS treated 



(4h) macrophages (GEO accession: GSM470558, GSM470559) were gathered. ChIP-
seq signals for these datasets along with the raw data of the H4ac datasets in this study 
were quantified into hypo- and hyper-acetylated regions in LPS treated samples and 
then hierarchically clustered. 
First of all, the number of overlapping uniquely alignable reads was computed for each 
region. These numbers considered any PCR-bias that could have affected each samples 
individually, so each set was cleaned accordingly. These numbers were then linearly 
normalized to the number of tags of the largest dataset. Since hyper- and hypo-
acetylated regions are heterogeneous in length, these numbers were divided by the 
individual length in kbp of each region. Finally, numbers were forced in the range 0-1 in 
an antibody-specific manner. That means that all the values coming from ChIP-seqs 
performed with the same antibody were considered together when rescaled to the 0-1 
intervals. All computations were performed using custom C++ scripts. Regions were 
then hierarchically clustered with R (average linkage and Pearson correlation as 
distance measure). Heatmaps were generated with R as well. 
 
Motif analysis (hypo- and hyper-acetylated regions from the ChIP-seq) 
Clover (Frith et al.) was used to perform motif over-representation analysis in regions 
whose acetylation was significantly affected by HDAC3 KO. The analysis was performed 
on hyper- and hypo-acetylated sets of regions in untreated as well as LPS treated 
macrophages. Each set was compared to a background of matching acetylated regions 
that were unaffected by the HDAC3 KO and were found significant against the input 
DNA (MACS, p<=1e-10). In this analysis we only considered distal regions (distant more 
than 2.5 Kbp form any UCSC known gene TSS). The analysis was run with the same 
PWMs used in the previously described Pscan analysis. A PWM was retained only when 
significantly over-represented (p<=0.01) compared to the matched background. Clover is 
available as a standalone tool while results were parsed using a custom Python script. 
 
Hyperacetylation (gene bodies) analysis 
We retrieved all the genomic regions corresponding to gene bodies of the RefSeq genes 
in the mm9 genome. For each one of them, the number of raw reads in the region was 
calculated for each H4ac sample. Two parallel analyses were performed for the 
untreated and the LPS treated samples. For each region, the number of reads calculated 
above and the number of reads falling outside the region for each sample were used to 
calculate the probability of this event to happen by chance using a chi-square test. In this 
way we were able to assess whether the significance of the difference in acetylation 
between the KO and the wt, taking into account the distinctive sequencing depth of the 
two samples. Chi-square p-values were then corrected for multiple hypotheses testing 
using the Benjamini-Hochberg correction (Benjamini & Hochberg). All gene bodies 
showing corrected p-values equal or lower than 0.01 and a ratio between the normalized 
numbers of tags in the KO versus the wt higher than one were considered as hyper-
acetylated. This information was then collapsed to gene symbols. A gene symbol was 
considered hyper-acetylated every time at least one overlapping RefSeq gene body was 
found significant. 
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